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PRESSING OF A COMPACT PLASTIC MATERIAL 

S. E. Aleksandrov and B. A. Druyanov UDC 621.762 

Pressing in a closed mold has been considered by many authors [1-5]. In contrast to 
others, it is shown in the present work that the compaction process occurs in two stages: in 
the first deformation it is only in the region adjacent to the piston, and in the second it 
is in the whole volume of the material. In the first stage around the bottom of the mold 
there is a rigid (undeformed) zone. The position of the boundary between the rigid and de- 
forming zones depends on the amount of upsetting. The first stage ends when this boundary 
reaches the bottom of the mold. Presence of a densification front is confirmed by experi- 
ment [6]. 

With relatively low density at the rubbing surfaces the Coulomb friction rule operates. 
With an increase in density normal pressure and frictional force grow in an unlimited way 
and at a certain instant reach a maximum value permissible by the flow condition. Then the 
Coulomb friction rule is not valid and the Prandtl friction rule takes effect. The exis- 
tence of two friction zones, i.e., Coulomb and Prandtl, at the rubbing surfaces is possible 
at a certain stage of the process. With a further increase in density the Coulomb zone dis- 
appears and the Prandtl rule operates on the whole surface of the mold. 

Statement of the Problem. We consider pressing of an axisymmetrical sleeve with an 
internal rod. We introduce a cylindrical coordinate system (r, 8, z), axis z of which coin- 
cides with the axis of symmetry of the pressed article [Fig. i: i) mold; 2) piston; 3) rod]. 

The radial velocity of particles v r should revert to zero at the surface of the rod and 
the mold wall, i.e., this value is small. We assume that v r = 0. The corresponding equi- 
librium equation of obtained by the Hill method [7]. The equation of virtual powers has the 
form 

R2 h " R2 ~ h '! r = R z  

R I 0 R 1 z=h  0 r ~ R f  

Here R 2, RI a re  mold and r od  r a d i i ;  h i s  c u r r e n t  b l a n k  h e i g h t ;  v z i s  p r o j e c t i o n  o f  v e l o c i t y  
on a x i s  z ;  o z ,  T rz  a re  n o r m a l  and t a n g e n t i a l  s t r e s s  t e n s o r  components .  

I n  o r d e r  t o  s a t i s f y  b o u n d a r y  c o n d i t i o n s  a t  t h e  bo t t om  o f  t h e  c o n t a i n e r  and base o f  t h e  
p i s t o n  we assume t h a t  v z does n o t  depend on r ,  and we p e r f o r m  i n  t h e  l e f t - h a n d  p a r t  o f  Eq. ( 1 )  
i n t e g r a t i o n  w i t h  r e s p e c t  t o  p a r t s :  

S i n c e  v z i s  a d e r i v a t i v e  o f  f u n c t i o n  z ,  t h e n  f r o m  ( 2 )  i t  f o l l o w s  t h a t  t h e  e x p r e s s i o n  i n  
s q u a r e  b r a c k e t s  s h o u l d  be  e q u a l  t o  z e r o .  The e q u i l i b r i u m  e q u a t i o n  i s  w r i t t e n  a s  
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( i '  OS/Oz + TIR I + T2R 2 = 0 S = rozdr is proportional to the average value of o z over the cross 
R i 

section; TI, T 2 are specific forces of friction at the rod surface and the mold walls). 

We assume that the effect of the force of external friction appears in narrow zones 
adjacent to the side surfaces of the pressed volume, and that the distribution of o z over the 
cross section is close to uniform. Then S = 0.5(R~ - R~)o z and the equilibrium equation 
takes the form 

0~1~ + T~2R~I(R22- R~ 2) + T22R~I(R22- R~ 2) = 0. (3)  

Values of T l and T 2 are determined by the friction rule. Thus, static boundary conditions 
are considered in the equilibrium equations. In the future we assume that T l = T 2 = T. 
Equation (3) may be obtained by the plane section method. However, use of the Hill method 
connects this equation with the suggested kinematic character given previously. 

We assume that the material obeys the Green flow condition 

~1~ + ~I~ = k ~. (4 )  

Here o is average stress; T is tangential stress intensity; k is the flow limit in shear for 
the base material; ~, ~ are known functions of p (p is relative density equal to the ratio 
of dimensional density to solid phase density). From equations of the associated flow rule 
with the assumptions adopted with respect to stresses and velocities the stressed state for 
the process in question is represented by the equations [5] 

~r =if0 -- ] /  (3a-- 2 ~ ) 3 ( 3 ~  +4~) 1, "2k' f fz= - -~3  (3a + 4~)1/2k (5)  

(o r , a 8, o z a r e  p r i n c i p a l  normal  s t r e s s e s ) .  By s u b s t i t u t i n g  t h e  l a s t  o f  Eqs.  (5)  in  (3)  we 
have  an e q u a t i o n  d e t e r m i n i n g  t h e  dependence  o f  d e n s i t y  on c o o r d i n a t e  z :  

Op/Oz = l~(p), g(p) = k(R~-- R1)/[4 ~/3T(3a + 4~)1/~ ](3daidp + 4d~/dp) (6) 

(T i s  a known f u n c t i o n  o f  d e n s i t y  w i t h  any f r i c t i o n  r u l e ) .  With t h e  Coulomb f r i c t i o n  r u l e  
T = f l O r [  [o r i s  f rom ( 5 ) ] .  I n  o r d e r  t o  f i n d  v z we have  a c o n t i n u i t y  e q u a t i o n  which  w i t h  
t h e  a s s u m p t i o n s  made i s  w r i t t e n  as  

8p/Ot + ~OplOz + pO~/Oz = O. (7) 

R e l a t i o n s h i p s  (6)  and (7)  t o g e t h e r  w i t h  b o u n d a r y  and s t a r t i n g  c o n d i t i o n s  d e t e r m i n e  t h e  de-  
pendence  o f  p and v z on x and t .  

F i r s t  S t a g e  o f  Compac t ion .  We assume t h a t  in  t h e  i n i t i a l  i n s t a n t  d e n s i t y  i s  u n i f o r m l y  
d i s t r i b u t e d  (p = P0) and t h e  h e i g h t  o f  t h e  b l ank  i s  h 0. S o l u t i o n  o f  Eq. (6)  t a k e s  t h e  form 

P 

z + ~ ( t ) =  c(p), G(~) = ~g(~)dp (8) 
Po 

[r is derivative function of time]. Relationship (8) is rewritten in the form p = F(z + 
~(t) ] (F is a function inverse to G). It can be seen that the change in p with time has a 
wavy character. If ~(t) is an increasing function, then the wave moves in the negative di- 
rection of axis z. Distribution of density at the current instant of time t is presented as: 
P = P0 with hA(t ) ~ z ~ 0 (rigid zone), p = f(z ~ ~(t)) with h(t) ~ z >~ hA(t) (compaction zone), 
where h(t) is current height of the working volume, hA(t) is the height corresponding to the 
boundary of the deforming and rigid zones which is determined from the condition of continuity 
of density at the boundary of these zones (p = P0 with z = hA). From (8) it follows that 
hA= --~(t). It is required that in the initial instant h A = h0, i.e., that there is no com- 
paction zone. Then function ~(t) should satisfy the condition ~(0)= --h0. 

The process of compaction may be presented as follows. In the initial instant density 
over the whole length of the blank is distributed uniformly. Then a compaction zone develops 
under the piston in which p = f ! z  ~ ~(t)). It occupies section hA(t )~z~h( t ) ,  and it propagates 

downwards with velocity lhAl=~(hA= dhA/~t, ~= d~/dt). With 0~z<h A deformation is absent 
and the density retains its initial value. 

In order to determine ~(t) and the projection of velocity v z we consider continuity Eq. 
(7). By using (8) we bring it to the form p~/0p ~ uz + T = 0, whence ~ --T(t)+~(t)/p 
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[~(t) is derivative function for time]. 

In order to find ~ and ~ we have two boundary conditions: the first expresses the con- 
tinuity condition for density and velocity at the boundary of the deforming and rigid zones: 
v z = 0 with p = P0, and the second expresses the condition of impenetrability of the bottom 

of the piston: v z = h with z = h. From the first condition it follows that ~(t)= ~(t)p0, and 
the second with the relationship v~= --~(t)+ ~(t)/p leads to a differential equation for x(t): 

dq ) = [ P m / ( P o -  Pro) ]dh (9) 

(Pm~-F(h-~) is density under the piston]. Equation (9) gives the dependence of ~ on h, 
from the initial condition it follows that [p(h,)=--h0, and this determines the dependence of 
(P on t since h(t) is known. By using the relationship h ~-T(t)= G(pm), it is possible to con- 
sider ~ as a function of p. We differentiate this equality and substitute the expression 
obtained in (9), which after integrating we have 

Pm 

�9 = ~  Pmg(pm) dp~--h 0  ̀ (10) 
Po 

The d i s t r i b u t i o n  of dens i t y  over the he igh t  i s  obtained from (8) .  By means of (9) we f i n d  
that 

v~ P (~o-Pm) 

Second Stage of Compaction. Compaction occurs throughout the whole volume of pressed 
material. Instant of time t, and the height of the working section h, corresponding to the 
start of the second stage are determined from the condition h A = 0. Since h A=-~(t), then t, 
is found from the equation ~(t.)= 0. Since h is a prescribed function of time, then h, is 
also known. Density distribution in the second stage as before is described by the function 
p = f(z + ~(0). However, instead of boundary condition v z = 0 with p = P0 it should be as- 

sumed that v z = 0 with z = 0. Since ~=--~ ~ ~/p, then this condition leads to the relation- 

ship ~ = ~p,, where Pn is density at the bottom of the mold (z = 0), then 

~ =  9(p,,/p - -  t ) .  ( 1 1 )  

From the second boundary condition (v z = h with z = h) we have 

(12) 

ii0 



Since h q- ~ = G(pm), then ~ -~ ~ = g(Pm);m. In addition, ~=G(p~), so that T =g(Pn)P~- By sub- 
stituting these conditions in (12) we obtain png(pn)dpa- pmg(pm)dpm. Whence 

Pa - Pm 

Po PO 

Constant c is found from the condition pm =pm*=pm(t,), On=P0 at the instant of the start of 
the second stage. Finally we obtain the relationship between current values of Pm and Pn: 

Pn Pm 

S og(o)eo, (13) 
Po Pm 

and it determines Pn as a function of Pm" Since ~ = G(p~), then ~ =~(Pm). Thus, all of the 
parameters of the process are expressed in terms of Pm- Since Pm is clearly a factor of h, 
then the solution does not depend implicitly on time, but it depends on h and z as it should 
in a plastic material. 

In order to obtain the final equation for velocity in the second stage we express 
in terms of h by means of (12) and we substitute it in (ii): 

(Pn-- P) Om~. (14) 

The solution built up above depends on the form of functions ~ and $ in the flow condition 
(4) and the rule for friction at the mold and rod walls. For ~ and ~ we take [8]: 

a =(4/3)pV(i -- p), ~ =  p3. (15 )  

The friction rule for the surfaces in contact depends on the stressed state and the 
Coulomb friction coefficient f which is assumed to be constant. If the stressed state is 
such that specific forces of friction found by the Coulomb rule are less than ~max (~max is 
the maximum tangential stress permitted by the flow condition with a given value of average 
stress o), then T = /IGrl~Tmax, and if this inequality is not fulfilled than the Prandtl fric- 
tion rule T = Tma x should be adopted. 

Since stresses determined by (5) satisfy the flow condition and they are the principal 
stresses, then Tmax= I~--~0[/2 and consequently taking account of (15) we have 

T m a x =  ( V ~ 2 ) p 3 / 2 ( l  __ p ) l / , .  (16)  

In the initial stage while p and [Orl are small the Coulomb friction rule is fulfilled. It 
follows from (5) that lOrl + ~ with p + i, therefore during compaction specific friction 
forces increase and in a certain instant of time they reach ~max. This occurs first at those 
points of the friction surface which are adjacent to the piston since maximum density occurs 

there. Further upsetting leads to spreading of the Prandtl friction zone over the whole 
height of the seat of deformation. 

We determine conditions for development of a Prandtl friction zone and disappearance 
of the Coulomb friction zone. For this we compare ~max from (16) with values of specific 
friction forces with the Coulomb rule (T = flOrl, o r is given by relationship (5). As a re- 
suit of this we obtain 

p1 = (3 Jr 2/)/3(2/ + t ) .  

The condition Pm = Pl corresponds to development of a Prandtl friction zone, and Pn = Pl 
corresponds to disappearance of a Coulomb friction zone. If f = 0.i and 0.2, then Pl = 0.89 
and 0.81. In the third stage the density is low and as a rule friction forces do not reach 
~max and this case is not studied. 

The Case when a Coulomb Friction Rule Operates over the Whole Height of the Seat of 
Deformation. We consider the initial stage of compaction (Pm ~Pl). Here over the whole ex- 

tent of the seat of deformation the Coulomb friction rule operates i.e., T ]lq~l /~--~- , = = X 

pSI2 (3p -- t) y o  
(i__p)l/2 According to (6) and (15) we have 

g(p) __ (R 2 -  R1) (3--2p) 
2[ ( l - -p)  p (3p- - t )  ' 

G(p) = (R2--2/R1) ]n Ice Pa(I--O) ~  --i)3'5..] (c o = poa(l _ i~o)O,5(3po_ t)-3,5). 
(17) 
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In the first stage of compaction function @ is determined by relationship (i0): 

(~ = (R2--~l)inl( 3Dm'~. ~?/6 { l--Po~l/2/__ 
2/ 'o tt, ) J ho. 

(18) 

The current height of the working volume 

h =  G(pm)" ~(9m). (19) 

Knowing r e l a t i o n s h i p  (18) ,  by means of  (8) and (17) i t  i s  p o s s i b l e  to  c a l c u l a t e  the  d i s t r i b u -  
t i o n  of  d e n s i t y  and p r e s s i n g  p r e s s u r e  f o r  d i f f e r e n t  v a l u e s  of  Pm" In t h i s  way (19) d e t e r -  
mines the  p o s i t i o n  of  the  p i s t o n  a t  a g iven i n s t a n t  of  t ime.  

Results of calculation with R I = 0, h0/R 2 = 3, P0 = 0.6, f = 0.i (solid lines) and 0.2 
(broken lines) are given in Fig. 2 (curves 6 and 7). 

The value of Pm corresponding to the end of th% first compaction stage Pm is found from 
the equation ~/-----0 : Pm = 0.614 with f = 0.2, Pm =-'607 with f = 0.i. In the second com- 
paction stage ~ is determined by the equation ~ = G(Pn). The value of Pn is obtained from 
(13) which now takes the form 

(3Pn 
__:~ ]7/0 /,1_'P0'~1/2 /3pro__ { ~7 / , / t __p*  m ~1/'~ 3p-V=T/ = k,_p ] . (20) 

Results of calculating the density distribution are presented in Fig. 2 (curves 4 and 5). 
This solution is in force while Pm~Pa. If Pl < Pm, then it is necessary to consider the 
combined existence of Coulomb and Prandtl friction zones. 

The Case when there are Both Zones. This period lasts while the inequality pm/>P~Pn" 
is fulfilled. Each zone corresponds to its solution: 

for the Coulomb friction zone 

P 

z +  r G:c(p)= gc(P)dp, p = F c ( z + ( p c ) , V c - - - -  ~c+a~c/9; 
Po 

for the Prandtl friction zone 
P 

z + +p(t)---- ap!p), ap(p)---- y gp(p)dp, O ---- Fp(Z + +p), 

o. (21) 
vp = -,% + 

Here gc(P) and Gc(P) are determined from (17), and 

gp (p) = (R, -- R,) {3--Zp) (R'--R1) 3In + -- 31n ~ q- (22) 
4 .p (,l __ p)~, Gp (p) = g . . 

The boundary of zone z* is found from the condition p = Pl- Whence z* = Gc(P I) - ~c(t) and 
z* = Gp(pl) - q~(t), and consequently ~p(t) = ~c(t) - Gc(Pl) + Gp(pl) and ~(t) = ~c(t). 
Since at the boundary of the zones the projection of velocity v is continuous, then ~c(t) = 
~p(t). The Coulomb friction zone is adjacent to the bottom of the mold, and therefore v c = 0 

with z = 0, then ~ c(t)pp = ~c(~). The Prandtl friction zone is adjacent to the piston, and 

this means ~ c(t) + ~c(t)/Pm = h. By combining the last two equalities we obtain 

~c(t)(pn/pm -- I)= h. (23) 

By determining from h = Gp(Pm) - ~p(t) the value of h and substituting it taking account of 

~p(t) = ~c(t) in (23) we have for finding ~ c(t) 

d~c= Pmgp(pm)dpm/~. (24) 

The boundary condition for (24): ~c = ~* with Pm = Pl [ ~* = Gc(Pn) with Pm = Pl]. 
Pm 

y P'gP(P') dp~ + ~*. 
Whence Pc= Pn 

Pl 
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The dependence of Pn on Pm is found by means of the equation 

Pn Om 

~. 9.ge (9.)do. = j" P.gp(9.)dp,,,, (25) 
On Pl . 

and Pn is found from (20) with Pm = Pl. Integration of (25) gives 

i ln[(3Pn--t)7/3(t--P*n) ] " ('Pro--P1) " (I--91) 
T [~-p--~Zt-~73-(-i--"~) (1-- - -~{=9,)  + 21u ~ . (26) 

Now by calculating ~ c(t) it is possible to find all of the integration functions and conse- 
quently the distribution of density and pressing force. Results of the calculation are pre- 
sented in Fig. 2 (curves 2 and 3). 

The Case when a Prandtl Friction Rule Operates over the Whole Length of the Seat of 
Deformation. The start of this period is determined by the condition Pn = Pz. From (26) 
density under the piston Pm at the start of this period is found. The distribution of den- 
sity and velocity is described by relationships (21) and (22). Boundary conditions: v z = 0 
with z = 0, v z = h with z = h. By carrying out transformation similar to previously we have 

Pra 

I" 9~gp (Pm) dpm + r (27)  p=J, 0. 
Om 

| 
By using the equation ~p(t) = ~c(t) - Gc(P z) + Gp(pl) we write @'= ~p(Pm)" The density 
at the bottom of the mold is obtained from 

Pm PR 

O I P~n > 

(28) 

Results of calculating the distribution of density from relationships (27) and (28) are pre- 
sented in Fig. 2 (curves i). 
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